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A B S T R A C T

The salt tolerance of crops is commonly expressed in descriptive parameters such as threshold or 50%-yield soil
salinity and shape parameters describing the yield curve. Estimation by visual or simplified ordinary least
squares (OLS) regression methods has multiple issues: parameter bias due to uncertainty in soil salinity, lack of
independent estimates of the reference yield, questionable robustness of the threshold parameter and missing
information about uncertainty and correlation of the parameter estimates. Here, we present a comprehensive
OLS method together with an analysis of its statistical properties to alleviate and overcome such issues, on the
basis of a numerical experiment that mimics observed yield responses to saline groundwater across a range of
salinities in the experimental test facility Salt Farm Texel.

The results indicate under which experimental conditions bias is not a major problem. The method allows
estimation of the zero-observed-effect yield from the data, which is relevant to agricultural practice. Estimates
for zero-observed-effect yield and threshold ECe are negatively correlated, underlining the difficulty of obtaining
reliable threshold values. The estimated confidence regions are reliable and robust against soil salinity un-
certainty, but large observation error jeopardizes the confidence intervals, especially for the slope parameter.
Data uncertainty alone can be responsible for substantial differences from experiment to experiment, providing a
partial explanation for the wide variety in reported parameters in the literature, and stressing the need for long-
term repetitions.

Given the lack of robustness of the threshold parameter, we propose to adopt the 90%-yield EC (ECe90) as
tolerance parameter. Its confidence bounds can be obtained from a simple reformulation of the original models.
We also present uncertainty ellipses as a suitable tool to unite multiple-year estimates. The method is offered as a
solid and generic basis for reliable assessment of the cultivation potential of varieties and crops on salt-affected
soils.

1. Introduction

One of the most common representations of salt tolerance originates
back to the celebrated Maas-Hoffman model (Maas and Hoffman, 1977)
describing crop salt tolerance by a threshold salinity parameter below
which yield is not affected, and a slope parameter describing the de-
cline in relative yield when salinity is beyond the threshold.

Previous work (Ulery et al., 1998), as well as a recent study (Stuyt
et al., 2016) reveals an extremely wide uncertainty range in crop sali-
nity tolerance parameters. Many studies report the estimates without
due account to the uncertainties associated with the estimation. Also,
the existence of a real threshold has been debated, leading to alternate

S-shape models, such as the models by Van Genuchten and Hoffman
(1984) and Van Genuchten and Gupta (1993). Though probably agro-
nomical more correct, these models have found less wide application, as
the parameters do not have the same intuitive appeal as the parameters
of the threshold model.

While Van Genuchten and Hoffman (1984) did an extensive study
on various least squares methods to estimate the parameters of either
model from soil salinity versus yield data, a number of issues need
further attention. We focus on: (i) possible bias due to uncertainty in the
independent variable (soil salinity), (ii) the assessment of parameter
uncertainty and correlation, (iii) the consequences of measurement
noise and parameter correlation to the variability of tolerance estimates
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between experiments, (iv) whether a different parameterization can be
found that is more independent of the chosen model.

The motivation for the current study is that the worldwide expan-
sion of salinization stimulates the quest for relatively salt tolerant
varieties to provide a partial solution (Ghassemi et al., 1995; Qadir
et al., 2014; Rozema and Flowers, 2008; Rozema et al., 2015). There-
fore it is necessary to have a solid estimation method that, ultimately,
allows for a reliable assessment of the suitability of varieties and crops
for cultivation on salt-affected soils.

2. Models and data for investigating salt tolerance of crops

2.1. Typical uncertainties in crop yields in response to soil salinity

Before proceeding we first present some typical crop data to provide
an impression of the uncertainties involved.

Fig. 1 shows three consecutive years of a series of data over the
years 2012–2017 of field experiments conducted at Salt Farm Texel,
(SFT). SFT has a facility of 1 ha split-up in 56 fields, grouped in 8
randomly selected fields that receive irrigation with one of seven irri-
gation Electric Conductivities (ECs) in a rotational system with one or
two irrigation events per day. The irrigation water is obtained by
controlled mixing of fresh dune water with sea water. The target irri-
gation ECs are 0, 4, 8, 12, 16, 20 and 32 dS/m. In this paper, data from
EC=32 are not considered, as it did not lead to consistent yields. The
actual EC of the lowest level was 1.7 dS/m up till 2015, which did not
allow estimating a zero-observed-effect (or reference) yield. An EC of
0.5 dS/m was achieved from 2016 onwards, but even such small sali-
nity deviations may cause deviation from a zero-observed-effect yield
(below, we will show how this problem can be circumvented by con-
sidering the reference yield as a parameter estimated from the data).
Soil samples and soil water samples were taken at various times during
the growing season at three depths around the root zone, from which

the seasonal mean soil salinity (measured as the Electric Conductivity of
a soil saturated paste; ECe) is derived per field as used in the Fig. 1
(left). In Fig. 1 (right), the data have been plotted again against the
seasonal mean ECe per treatment group. Based on the water and salt
balance, the expected pore water conductivity was 1–2 percent higher
than the irrigation EC (depending on the year). Together with the ex-
perimentally established relationship between ECe and pore water EC
(ECe=0.69 pore water EC), it is deduced that the expected values for
the remaining 6 group treatment means are about 1.2, 2.8, 5.6, 8.4,
11.2 and 14 dSm−1. Details of the irrigation and sampling procedure
can be found in De Vos et al. (2016) and Van Straten et al. (2016).

Fig. 1 shows how, at SFT, the reproducibility and consistency of the
irrigation and sampling improved over the years, as seen from the more
clustered data in later years, and the more even distribution of the
group means over the soil salinity range. In particular, by the in-
stallation of a tap water basin in 2016, SFT provided lower EC values of
irrigation water. Moreover, the group mean ECe gets closer to the target
ECe’s. This does not disqualify the soil salinity – yield pairs (left panels
of Fig. 1) as useful points for the determination of the tolerance curve; it
only means that the true soil salinity was not the one that was originally
intended. Even in 2016 though, there is considerable scatter in yields
for fields supposed to have the same treatment. Also average yields vary
from year to year.

In general salinity effects on crop yield can be described by a
multiplicative limitation function, i.e.

=Y Y f ECe( ; )o (1)

where
Y actual salt affected yield
Yo yield without salinity limitation (but possibly affected by other

factors); reference or zero-observed-effect yield
f limit function, between 1 (no effect) and 0 (complete mortality)
ECe soil salinity, expressed as saturated paste

Fig. 1. Sample data from Salt Farm Texel (potato Achilles, years 2014–2016). Tuber yield versus seasonal mean soil salinity as saturated paste. Left hand side: each
replicate (8 in 2014, 2015, 4 in 2016) plotted separately. Right hand side: against the group mean.
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β a vector of parameters in the function f.
Any set of consistent units can be chosen. The common practice to

estimate parameters β from relative yield data Y/Y0 implies that valid
results are only obtained in the rare case that the zero-observed-effect
yield has been measured with high precision.

There might be interaction between salt tolerance and evapo-
transpiration of some crops, e.g. Groenveld et al. (2013); Shani and
Dudley (2001); Sadeh and Ravina (2000). The literature is not decisive
on this point and further study is needed to see whether this is con-
sistent with the simple formulation in Eq. (1). Here we adhere to the
dominant approach in the salt tolerance literature and base our in-
vestigations on two common salt tolerance models.

2.2. Common salt tolerance models

2.2.1. The threshold model
The threshold (or breakpoint) model by Maas and Hoffman (1977),

denoted in the sequel as MH, is given by
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where
Y yield at a particular ECe (dependent variable)
Y0 yield without saline stress (a parameter)
ECethr threshold (breakpoint) ECe beyond which yield effects are

expected(a parameter)
S slope, i.e. the loss in yield per unit ECe beyond the threshold (a

parameter).
The yield is expressed in appropriate yield units (possibly different

by crop), and the ECe is expressed in dS m−1. The slope in the equation
above is negative, and is expressed in appropriate yield units per dS
m−1. Note that in the MH model there is a discontinuity in the deri-
vative of the yield to ECe at =ECe ECethr . In theMHmodel, the number
of parameters to be estimated is 3.

Once an estimate of the unaffected yield Ŷ0 is available, in addition
to the estimates ECeˆ thr and Ŝ, a plot in terms of percentage of unaffected
yield can be presented as
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where
=S S Yˆ 100 ˆ/ ˆ% 0 the percentage yield loss per unit of dS/m beyond the

threshold (relative slope).
Obviously the relative slope curve relies on the estimates of both

slope and zero-observed-effect yield. The latter is unknown in real field
situations, but is often derived from the yields observed at the lowest
salinity level. From the above it is clear that this procedure is prone to
errors.

2.2.2. The S-shape model
One particular useful form of an S-shape model is presented in Van

Genuchten and Hoffman (1984) as

=
+ ( )Y Y 1

1 ECe
ECe

p0

50 (4)

where the additional symbols are
ECe50 the ECe at which the yield has dropped to 50% of the max-

imum yield Y0 (parameter) pa dimensionless steepness parameter.
This, too, is a three-parameter model. In a later study, Van

Genuchten and Gupta (1993) found that fixing the value of p to 3,

resulted in only slightly worse fits for most crops. By doing that, the
number of parameters to be estimated reduces to 2.

Once an estimate of the unaffected yield Ŷ0 is available, in addition
to the estimates ECeˆ 50 and p̂ a plot in terms of percentage of unaffected
yield is given by
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In contrast to the MH model, the parameters in the relative plot
remain the same, irrespective of the estimate of unaffected yield Ŷ0 .
Also, there are no discontinuities in the derivative of the yield to ECe.

Hence, from a mathematical point of view, the S-shape model is
preferable. However, in agricultural practice, the MH model has the
charm of an easy interpretation.

2.3. Parameter estimation

There are various methods to estimate abovementioned parameters
from data. A linear equation can be fit for salinities beyond the
threshold by the least squares method (Maas and Hoffman, 1977). This
method requires a visual determination of the threshold and the re-
ference yield. In the example of Fig. 1, visual inspection would suggest
that, if a threshold ECe exists at all (cf. the 2015 data), it must be be-
tween 4 and 6 dSm−1. This uncertainty will affect the result. In Maas
(1993) it was stated that the threshold can be found by the intersection
of a horizontal and sloping regression line, but this does not eliminate
the arbitrariness as the location of the horizontal line will depend on
the number of points included. As more objective procedure Van
Genuchten and Hoffman (1984) proposed to apply ordinary least
squares (OLS), solved by a non-linear optimization method. This is also
the basis for our study, but expanded with an in-depth analysis and the
assessment of parameter confidence regions and correlations.

The OLS method assumes that the independent variable – soil ECe -
is known with large precision. This is obviously not the case, as clearly
testified in Fig. 1. Hence the problem is a so-called errors-in-variables
case (also known as type 2 errors in statistical literature), leading to
biased estimates, meaning that the mean of the estimates over repeated
experiments will not converge to the true value. Rather than taking
resort to instrumental variables or total least squares, requiring addi-
tional assumptions, we keep the attractive OLS method, and just test by
a numerical Monte Carlo experiment the bias under realistic noise
conditions.

Such evaluation of the OLS estimation is not complete without the
assessment of parameter uncertainties and the correlation between the
estimates. From Eq. (2), it is apparent that a higher estimate for the
reference yield must be compensated by a lower estimate of the
threshold ECe. This alone can be a source of variation in reported
threshold values.

The parameter estimation method and the assessment of the cov-
ariance of the parameters is outlined in Appendix A. The method was
implemented in matlab, allowing to analyse the structure of the para-
meter solutions in more detail, but it can also be done in standard
statistical packages such as SPSS.

2.4. The numerical experiment

The OLS method applied to an individual year provides estimates of
the parameters and of the (co-)variance of the estimated parameters,
but the asymptotic properties of the estimator can only be judged over a
large number of experiments. Hence a numerical experiment was set up
pretending the availability of a large number of datasets with known,
fixed parameters. The experiment was set up in so that it mimics the
observed situation as closely as possible. The unparalleled rigour and
gain in experience of the experiments at SFT allowed to suspect that
part of the variation in soil salinity is real, due to variations in
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irrigation, especially in earlier years. Generally, especially regarding
literature data, it is impossible to tell whether the variation of observed
ECe in the soil is real or the result of observation and sampling error, or
both. Therefore, in the numerical experiments, sets of artificial data
were generated with a varying distribution of the two uncertainties
over the total. The standard deviation of the soil EC due to uncertainties
in the transfer from irrigation to soil is called sdXtarget, and the ob-
servation and sampling error is called sdX. There is also uncertainty in
the yield, sdY.

Starting with the irrigation EC of the six treatments, the target soil
ECe was computed following information in section 2.1. Next, 100 ar-
tificial data sets each with 48 (8×6) ECe-yield pairs were generated in
two steps. First, random normally distributed noise with standard de-
viation (s.d.) sdXtarget was added to the target soil ECe’s, thus re-
presenting the true variation in the soil. Next, with the model and a set
of realistic parameters (MH: Y0=60 tons ha−1, ECethr= 4 dSm−1, S
= -3 tons ha−1 dS m−1; vGH: Y0= 60 tons ha−1, ECe50= 10 dSm−1,
p=3) the yield was computed for each true soil ECe. Finally, normally
distributed observation noise was added to both the soil ECe (with s.d.
sdX) as well as the yield (with s.d. sdY). We set sdY to 4 tons/ha. This
gives an individual 95% realization range of 16 tons/ha (cf. Figs. 1 and
4). The s.d. of the target ECe and the ECe observation noise was varied
between 0 and 3 dS/m. In this way, several sets of 100 virtual experi-
ments were obtained for various distributions of the total noise in soil
ECe over a true variation and a variation due to observation error. The
data were specific for SFT, but it is important to stress that the proce-
dure is generic for most salt tolerance of crops literature for which data
consist of noisy ECe versus noisy yield data, e.g. De Pascale and Barbieri
(1995).

3. Results and discussion

3.1. Estimation and uncertainties in soil tolerance on real data; illustrative
example

Fig. 2 shows the actually observed standard deviation of the sea-
sonal mean soil ECe per treatment group in the various years and the
improvement of the reproducibility over the years as a consequence of
improved skills and experience at SFT. Thus, the high end of the chosen
ECe noise is representative for the early years, and the low end for later
years. There is also some variation of the noise between irrigation
groups, but for simplicity, in the numerical experiment, the uncertainty
has been set equal over all irrigation groups.

To corroborate the realism of the artificial data, one sample out of
the 100 artificial data sets is shown (Fig. 3) for different values of the
target and observation noise in ECe. When the total noise is low (case A,
sum 0.4 dS/m), the data become more clustered - resembling the 2015
situation -, whereas if the noise is large (case B, sum=3 dS/m), the
data look more distributed (resembling the 2014 situation).

In order to better understand the numerical experiment, it is ap-
propriate to illustrate the estimation method. Achilles 2014 is taken as
an example. The OLS fits and uncertainty bounds are shown in Fig. 4
and Table 1.

The individual prediction error bounds specify the range of out-
comes for a single field subject to a specific soil salinity, e.g. at an ECe
of 8 dS/m the yield will be between about 10 and 30 tons/ha. The si-
multaneous prediction error represents with 95% probability the mean
outcome for a group of farmers or fields (in the example between 20 .

Fig. 2. Standard deviation of the seasonal mean soil ECe at Salt Farm Texel in various years for the different irrigation treatments.

Fig. 3. Example of the effect of noise on generated artificial data (set 84 out of
100). A: sdXtarget= 0.2, sdX= 0.2; B: sdXtarget= 1, sdX=2; in both cases
sdY= 4.
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The representation in Table 1 can be somewhat misleading since the
correlation between parameter estimates was not accounted for. At
each individual point the OLS provides an estimate of the co-variance,
i.e. of the confidence contour around that point (and can also be ob-
tained from the correlation matrix (not shown). Fig. 5 shows that the
center of the ellipse is located at the best estimate. The estimate for the
threshold ECe is between 2.8 and 7.5 dSm−1, and that of the unaffected
yield between 24 and 30 tons ha−1, in accordance with the standard
representation in Table 1, but the combinations (2.8, 24) or (7.5, 30),
for instance, are outside the confidence contour. Also, a high estimate

of the unaffected yield implies a low estimate of the threshold, and vice
versa, illustrating one of the difficulties of obtaining reliable salt tol-
erance parameters from field data.

In addition to the default parameters, one can also obtain the ECe90,
i.e. the ECe where the yield is 90% of the maximum yield, and the
ECe50, representing the 50% yield ECe. The ECe90 is 6.6 and
6.0 dSm−1, for MH and vGH, respectively, whereas the ECe50 is 12.7
and 12.4 dSm-1, respectively. In this regard, the models yield similar
values for properties that are of agricultural interest.

Table 2 presents the goodness of fit criteria of the two models (as
defined in Appendix A), compared with simple linear regression (LR).
The differences in root mean square error of the three models is hardly
discernible. The MH model has the lowest sum of squares and the
highest R2 values, although the differences are small. The addition of
the extra parameter in the MH and vGH models compared to linear
regression leads to a lower AIC, meaning that these more complex
models are justified. This is in line with what is seen from the data of
other years, and data from the literature. The ability to distinguish
between MH and vGH will largely depend upon the availability of data
at the high-end tail of the curve, but the agricultural significance of this
part of the curve is low. The R2 values are rather low, in line with the
high variation in yields. An analysis of the residuals (not shown) does
not reveal correlation or skewness, meaning that the models are rea-
sonable.

Fig. 4. Potato cultivar ‘Achilles’, 2014, MH (left) and vGH (right). Solid line: fit; dotted lines (inner bounds): simultaneous prediction error; dashed lines (outer
bounds): prediction error for an individual measurement. Ellipse: 2-D cross section of the 95% confidence contour for Y0 and ECethr (see text).

Table 1
Estimates of salt tolerance using the OLs fits. Example for Achilles 2014.

Achilles 2014 MH vGH

95% confidence
interval

95% confidence
interval

estimate low high estimate low high

ECethr (dS m−1) 5.13 2.77 7.50
S (tons ha−1 m dS−1) −1.77 −2.30 −1.24
ECe50 (dS/m) 12.38 10.70 14.06
p (-) 3.02 1.34 4.70
Y0 (tons ha−1) 26.95 24.27 29.63 27.73 24.48 30.99

Fig. 5. Approximate 95% parameter confidence contours for all three parameter combinations, potato Achilles 2014. left: MH, right: vGH.
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3.2. Bias and reliability of confidence contours

The OLS method provides descriptive statistics for the estimate of an
individual year, but for the generic behaviour of the estimator, the
numerical experiment is instrumental. Fig. 6 shows the position of the
individual estimates for the 100 realizations, with the same relatively
large noise as in Fig. 3B. One of these points belongs to the artificial
data of Fig. 3B.

It is striking that, across all realizations, the range of estimates in the
ensemble (Fig. 6) closely resembles the shape of the estimated con-
fidence contours of an individual estimate, including the correlation
between estimates (Fig. 5). However, the true value barely falls within
the range, indicating a clear bias in this case. This means that over a
number of experiments the mean will be off from the true value. The
noise for Fig. 6 was chosen to be rather high to clearly visualize the
occurrence of bias. Similar plots can be presented for cases when the
noise is smaller. In those cases, bias may be almost absent. The relation
between noise and bias is further discussed in section 3.4.

In a situation without errors-in-variables the 2σ-bound represents
the exact 95% confidence interval for linear parameters (such as Y0) and
approximately 95% for non-linear parameters. When these conditions
are not met, as is the case here, no firm statements can be made. To test
whether the assumption was approximately valid, the distribution of
the distance of the estimated point to the true point was tested, nor-
malized by the estimated standard deviation, i.e.

| ˆ |
ˆ

true

is evaluated. The result is shown in Fig. 7, for both the ‘high noise’
example as well as a ‘low noise’ one.

The statistics of the confidence intervals of both the estimates of
ECethr as well as Y0 are close to the expectation that there are no more
than 5 out of 100 cases where the true value is outside the 2- bound
( =x 2), even if the noise is relatively large. Obviously, for an individual
year, there is no guarantee that the true parameter is within the esti-
mated uncertainty bound, underlining again the importance of repeated
experiments. If the noise is large, Fig. 7 top reveals that the estimated
confidence range of the slope is unreliable as more than 30% of the
cases lies outside the 2-σ bound, or, formulated differently, the 2-σ
bound is associated with a confidence level of about 70% rather than
95%. The difference disappears if the noise becomes smaller (Fig. 7,
bottom).

3.3. Effects of taking group means on salt tolerance estimates

It is expected that the bias due to high noise in the soil salinity can
be reduced by taking the mean of the treatment group prior to the es-
timation. Comparing Fig. 8 with Fig. 6 reveals that this is, indeed, the
case.

This can be explained by the fact that in the presence of large ob-
servation noise the mean soil salinity is a better estimate of the actual
soil salinity than the individual salinities per replicate. However,
averaging may be counter-productive if the variation in the soil is lar-
gely determined by true variations in irrigation conditions (See section
3.4).

Averaging might also help to improve the confidence estimation
statistics. Fig. 1 Regarding the ‘high noise’ case, the number of cases
where the 2-σ bound is not met reduces from 33 to 20 out of 100 for the
slope, which is an improvement, but still far from the ideal 5%. Aver-
aging somewhat worsens the reliability of the confidence contour for
ECethr (from 4 cases out of 100 to 8), whereas the confidence contour of
the zero-observed-effect yield (Yo) remains reliable. The latter probably

Table 2
Goodness of fit of the 3 models, with Achilles 2014 as an example.
Abbreviations: see Appendix A4.

goodness of fit MH vGH LR

ssq 1133.1 1150.0 1200.3 (tons/ha)^2
df 45 45 46 –
RMSE 5.02 5.06 5.11 tons/ha
R^2 0.63 0.62 0.60 –
R^2_adj 0.61 0.61 0.60 –
AIC 343.6 344.3 344.4 –

Fig. 6. The estimates for the 100 random artificial datasets with sdXtarget= 1, sdX=2 and sdY=4. The cross-hair represents the true point while the square shows
the arithmetic means.

G. van Straten et al. Agricultural Water Management 213 (2019) 375–387

380



relates to the fact that the models are linear in this parameter.

3.4. Effect of the distribution over target ECe and observation ECe

In order to further study the effect of the two sources of noise in the
soil ECe, the bias was studied as function of the distribution of the total
noise over the irrigation target noise and the observation/sampling
noise. We expect the bias to be larger if the proportion of the ob-
servation noise becomes larger. In that case, averaging over all re-
plicates prior to estimation may be better. On the other hand, if the soil
salinity is determined by variation in irrigation or in other soil prop-
erties (target noise), then the variation is real, and it is expected that
averaging will not improve the estimates.

In general, this picture is confirmed in Fig. 9 where the bias is ex-
pressed as percentage of the true parameter value. A large proportion of
observation noise causes a large bias in both ECethr as well as in S, while
the bias in zero-observed-effect yield Y0 remains small. Beyond a con-
tribution of observation noise of around 30%, averaging reduces the
bias. Without observation noise, the bias is zero, and averaging has a
negative effect since it averages out real differences. The effect on the
parameter confidence interval was studied by plotting the average of
the 100 coefficients of variation (cv), i.e. ˆ / ˆ expressed as percentage. It
can be seen (right hand panels) that with more observation noise the
uncertainty in the parameter estimates increases with increasing

observation noise if the fields are treated as independent, and vice versa
if the replicates are averaged.

The practical meaning of the results is that in experimental situa-
tions with replicates with good control over the root zone salinity, such
as in greenhouses, averaging prior to estimation leads to less biased
results. The practical meaning for field experiments (as carried out at
e.g. SFT) can better be judged from a plot of the observation noise at a
fixed target noise. In Fig. 10, a target noise of 1 dSm−1 is assumed, with
an observation noise ranging from 0 to 3. The bias is practically absent
without error-in-variables, i.e. at observation noise 0 (the small de-
viation is due to the randomness of the yield), and expands rapidly
when the noise increases. The threshold is underestimated (negative
bias), but overestimated by averaging. Beyond about 1 dSm−1 aver-
aging the soil salinity per treatment group leads to lower absolute bias.
As, at SFT, according to Fig. 2, the total uncertainty is generally less
than 2 dSm−1, there is little practical difference between averaging or
not. This also holds for the slope S, whereas for the zero-observed-effect
yield the bias is always less than 0.5% so that the choice about aver-
aging has no impact.

When the same exercise is done for the vGH model, the overall
picture is the same, but the bias in ECe50 is going up to +10%, com-
pared to the -30% of the ECEthr toward sdX=3. Also the bias in slope
parameter is more favourable (-25% in S vs -15% in p), at the expense
of a little bit more bias for Y0 (-2% vs. -4%).

Fig. 7. The percentage of occurrences where the distance between estimate and true value relative to the standard deviation is larger than the value along the x-axis.
Top:’ high noise’ sdXtarget= 1, sdX=2; Bottom: ‘low noise’ sdXtarget= 0.2, sdX=0.2).
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3.5. An alternative agronomically sensible parameterization – ECe90

Although the threshold ECe as parameter has been widely used, and
has appeal in agricultural practice, it is doubtful whether such a sharp
threshold really exists. In view of the correlations, the bias and the
uncertainties, its determination from a few single experiments can only
be done with large uncertainty. Moreover, there is no direct way to
deduce this parameter in a decent way when the probably more rea-
listic S-shape functions are used. Therefore, we advocate an alternative
parameter that is agronomical meaningful, and can be evaluated more
or less independent of the model choice. Such a parameter is the ECe90,
i.e. the soil ECe level at which the yield has dropped by 10%.

While the calculation of the ECe90 from the original parameters is
straight-forward in both models, the assessment of its uncertainty is
not, because there are no analytical tools for the error propagation in
non-linear expressions. However, by reformulating the models such
that ECe90 is the native parameter, the OLS can be applied to this new
parameter, including the assessment of the parameter uncertainty and
other statistics, completely equivalent to the procedures in Appendix A.
The alternative models with ECe90 as parameter are presented in
Appendix B.

Next, the same analysis of the effect of uncertainty on bias and es-
timation error is done with the new parameterization (Fig. 11). Here we
chose to present the bias in absolute units (dS m−1), so that it can be
compared to the estimation error.

The bias of ECe90 is quite a bit lower as compared to ECethr, espe-
cially at higher noise levels, and also the average estimation error is
lower. This is true both for treating the fields as independent or by
taking the group means.

In the vGH model (not shown), the bias in ECe90 is also lower than
in the original parameterization with ECe50, although in each case the
bias almost disappears when soil salinities are averaged. The estimation
error of ECe90 is higher though. In general, the ECe50 can be determined

with largest precision, which intuitively makes sense. Nevertheless,
since ECe50 is less interesting from an agricultural point of view, it
remains useful to know the confidence range for the more relevant
ECe90.

The robustness of determining ECe90 under different model as-
sumptions was also evaluated. To this end, data were generated with
the vGH model (with ECe50= 12, p=3, so that the equivalent true
ECe90= 5.77 dS/m) and EC90 was estimated with the alternative forms
of both models. Application of the MH model mimics the situation
where the data are evaluated with the popular threshold model while
they originate, in fact, from an S-shape curve. Again, 100 sets were
generated for three combinations of target noise and observation noise,
with a total sum of 2 dS/m (illustrative of the situation at SFT).

In the absence of observation noise (sdX= 0) there are differences
between the two models (Table 3), and it requires the correct model
(vGH) to obtain the correct value. While the bias increases when the
observation noise (sdX) gets larger, as expected, the estimates of both
models become remarkably similar (Table 3).

It should be noted that the transformation to ECe90 does not modify
the yield prediction uncertainty bounds as shown in Fig. 4.

3.6. Representation of salt tolerance by uncertainty ellipses over multiple
years

The method can now be applied to data from several years of ex-
perimentation. It is already clear from the data that the estimated
parameters will differ from year to year. To get an impression of the salt
tolerance over the years, the uncertainty ellipses for the MH model
obtained with the individual data have been plotted for the alternative
form with ECe90 (Fig. 12).

For easier interpretation, the slope is represented here as the per-
centage decline per unit soil ECe change.

In some years, with the Maas-Hoffman model, it appeared not

Fig. 8. Estimates of salt tolerance parameters for the 100 random artificial datasets with sdXtarget= 1, sdX=2 and sdY=4, after taking the treatment group mean
soil ECe rather than the individual field ECe.

G. van Straten et al. Agricultural Water Management 213 (2019) 375–387

382



possible to obtain a reliable estimate for the threshold ECe. The inverse
in the matrix J JT in Eq. (A.3) cannot be evaluated because the matrix is
singular. It can be shown that this occurs when there are no data below
the threshold ECe, so that the model cannot be distinguished from a
linear regression model. This would be different if an independent
measurement of the zero-observed-effect yield Y0 would be available,
but this is not the case. In the vGH model the above problem does not
occur, since all data contribute to the curve. Hence, to obtain approx-
imate uncertainty bounds in the ill-conditioned case, the MH curve was
directed to the Yo found from the vGH model. This was done by adding
some additional pseudo-data pairs at ECe=0 (three extra points with
the vGH Yo, and two points plus or minus one standard deviation). This
procedure was tested extensively and was found to provide approx-
imate uncertainty bounds that coincide well with the simultaneous
prediction error like the one shown in Fig. 4.

The area with most overlap of the ellipsoidal regions can be con-
sidered as the most likely multi-annual estimate, thus leading to an
ECe90 of about 5.5 dS/m with a decline rate of roughly 5.5% per dS/m.
In this case, there is little difference between averaging or not over the
treatment mean seasonal soil ECe (not shown).

Similar plots can be made for the vanGenuchten-Hoffman model
(not shown).

4. Concluding remarks

Our improved methodology to assess salt tolerance of crops resolves
a number of issues in the current estimation of salt tolerance parameters
from field trials. The success of our proposed method depends upon the
success of the field trial and does not provide a solution for additional
issues that are inherent in final-yield field trials. A common

Fig. 9. Effect of soil salinity noise distribution over target noise and observation noise on the bias (left; a negative value means that the estimate is lower than the true
value) and mean estimation error (right; expressed as coefficient of variation (cv)) in the threshold model(MH). Total noise sum is 3 dS/m. Triangles: all fields
separately; Circles: with treatment group mean soil salinity.
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prerequisites is the prevention of other limiting factors, such as water
stress. In addition, variation in soil salinity during the season cannot
always be avoided, but the effects are hard to investigate from final
yield observations alone. The method can cope with yield variations
between years, but method nor final-yield field trials can unravel the

causes, such as variation in breed material, differences in plant-soil
interaction, differences in soil biotics, and the effect of growth stage on
salinity tolerance.

With these limitations in mind we showed that the ordinary least
squares method provides an objective manner to assess the salt toler-
ance of crops. The associated analysis of the parameter uncertainties
and correlations reveals that unavoidable noise alone is already re-
sponsible for part of the variety in salt tolerance values reported in the
literature, underlining the necessity to perform experiments over a
number of years. In general, the zero-observed-effect yield must be
considered as a parameter that needs to be estimated as well. The
customary estimation from relative rather than absolute yields is prone
to error, unless the reference yield Y0 is known with large precision.
Efforts in the field to assess the zero-observed-effect yield will be re-
warding as pin-pointing this parameter reduces the uncertainties.

The uncertainty in the soil salinity as the independent variable leads
to estimation bias. The bias reduces when the proportion of the noise
that cannot be explained by known variation in treatment salinity is
lower. In high noise situations, the effect of bias can be mitigated by
averaging the soil salinities of replicate fields with the same target
salinity prior to estimation. Averaging also results in lower variance of
the parameters in that case. At Salt Farm Texel the bias is relatively low.
The situation in other field test sites can be readily judged by per-
forming a similar numerical experiment. Our expectation is that in
carefully designed experiments bias is not a major problem.

The parameter estimation variance obtained from a single experi-
ment is generally a good measure of the 95% confidence bound of an
ensemble of measurements, but with high soil salinity variance the
reliability of the 2-σ boundary of the slope is substantially lower.

The correlation between the estimates, for instance between zero-
observed-effect yield and threshold, must be considered when judging
separately reported uncertainty bounds. In calculating the prediction
uncertainty of the expected yield at a specific soil salinity, our method
automatically accounts for the covariance. The prediction uncertainty is
smaller than when the bounds are considered independently. The plot
of the ellipsoidal uncertainty ranges is offered as a convenient way to
aggregate the data over multiple years. The S-shape model has better
mathematical properties than the threshold model, but the ECe50 is a
less attractive parameter in practice. On the other hand, the threshold
ECe is often hard to determine, and its true existence may be ques-
tioned. As an alternative to both the ECe50 as well as the threshold ECe,
the ECe90 might be a better choice. While its value can easily be ob-
tained from original model parameters, its uncertainty cannot. It has
been shown that by a simple model transformation its estimation un-
certainty can be estimated. It turns out that bias and estimation var-
iance are lower than for the threshold EC, and its estimate is more
robust against the choice of the descriptive model. Hence, we advocate
our method to reduce statistical issues prevailing in current estimation
approaches and recommend EC90 as an agronomical sensible measure
of salt tolerance of crops.

Fig. 10. Effect of increasing observation noise at a fixed value of the noise in
target salinity of 1 dS/m. Triangles: each field independently. Circles: with the
group mean ECe.

Fig. 11. Comparison of bias (a) and standard error (b) of ECethr and ECe90.
Target salinity noise fixed at 1 dS/m. Solid lines: ECe90; dashed lines: ECethr.
Triangles: each replicate separately, circles: with treatment group averaged soil
salinity.

Table 3
Average estimated value of ECe90 for data generated with the vGH model with
various values of the two sources of noise in soil salinity (all in dS/m). True
value 5.77 dS/m.

ECe90

sdXtarget sdX MH vGH

2 0 5.52 5.78
1 1 5.63 5.68
0 2 5.35 5.37
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Appendix A. Parameter estimation and co-variance assessment

A1 Estimation method

The ordinary least squares method (OLS) is given by

= argmin Vˆ ( ) (A.1)

where the caret denotes the estimate, and where V ( ) is the sum of squared differences given by

=
=

V Y i Y i( ) ( ( ; ) ( ))
i

N

obs
1

2

(A.2)

Here Y i( )obs is the observed yield at the i-th ECe value, and Y i( ; ) the modelled yield given by any of the models (2) or (4).

A2 Confidence contours and intervals

The co-variance matrix of the parameter estimates is given by

= =P cov V
N n

J J( ˆ) ( ) ( )
p

T 1

(A.3)

Here, N is the number of samples, np the number of parameters and J is the Jacobian matrix, formed by the derivatives of each output
observation to the parameters. Hence, J is a ×N np matrix. Consequently, the covariance matrix P is a ×n np p (symmetric) matrix.

The standard deviation of the estimate is

= P( )j jj (A.4)

and the correlation coefficient for the off-diagonal elements is

12
2

1 2 (A.5)

An approximate 95% confidence interval (Cramér-Rao lower bound) for parameter j when all other parameters are at their optimal value is

+ˆ 2 ( ) ˆ 2 ( )j j j j j (A.6)

Fig. 12. Uncertainty ellipses for potato Achilles of thresholds (x-axis) and slope of yield decline (y-axis), estimated with the Maas-Hofmann model over the years
2012–2016 using the individual field data, with the alternate parameterization based on ECe90. Dashed lines: ill-conditioned cases (see text).
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The percentage is approximate since the model is non-linear in the parameters.
Individual parameter confidence intervals can be misleading if there is correlation between the estimates. The confidence region is ellipsoidal,

and the corner points of the region defined by Eq. (C.6) are usually outside the confidence region.
Expression (A.3) requires the inversion of the ×n np p matrix J JT . This inversion is possible only when the matrix is well conditioned. The

condition number is the ratio between the largest and smallest eigenvalue of this matrix. When the condition number is large the matrix inversion
becomes problematic, and the covariance of the parameters blows up. In that case, no reliable parameter estimates can be obtained.

A3 Prediction error

The non-simultaneous prediction error specifies the uncertainty of prediction of the yield when one additional ECe were tested. It is given by

= +b i V
N n

J i PJ i( ) 2 ( ˆ) ( , :) ( , :)ns
p

T

(A.7)

where J i( , :) is the i-th row of the ×N np Jacobian matrix, and P the covariance matrix according to Eq. (A.3). The predicted yield is expected with
approximately 95% confidence between the bounds Y i b i( ˆ; ) ( )ns and +Y i b i( ˆ; ) ( )ns .

The simultaneous prediction error is given by

=b i J i PJ i( ) 2 ( , :) ( , :)s
T (A.8)

It represents the bounds of the curve when measurements for all ECe values would be repeated. It is important to remark that this does not mean
that the curve in another year will be within this bound. The predicted values are between the bounds Y i b i( ˆ; ) ( )s and +Y i b i( ˆ; ) ( )s .

It can be seen from Eqs. (A.7) and (A.8) that the simultaneous prediction error is smaller than the non-simultaneous prediction error.

A4 Goodness of fit

Root mean square error

=rmse V
N n

( ˆ)
p (A.9)

Number of degrees of freedom

=dof N np (A.10)

R-square

=
=

R V
Y i Y i

1 ( ˆ)
( ( ) ¯ ( ))i

N
obs obs

2

1
2 (A.11)

Adjusted R-square

=
=

R
V

Y i Y i
1

( ˆ)

( ( ) ¯ ( ))
N n

N i
N

obs obs

2

1

1
1 1

2
p

(A.12)

Closer to 1 is better.
Akaike’s Information Criterion AIC

= +AIC n N ln V2 ( ( ˆ))p (A.13)

Based on the likelihood but ignoring the constant term N N N Nln ( ) ln (2 ) . The model with the lowest AIC is preferred.

Appendix B. Alternate model formulation with ECe90

The derivation is done for any desired percentage nn % of residual yield at ECenn, where 0 < nn< =100.

Maas-Hoffman

At the desired ECenn the following holds

= = +Y ECe
Y

nn S
Y

ECe ECe{ }
0 100

1
0

*( )nn
nn thr (B.1)

From this expression ECethr can be expressed in the new parameter, i.e.

= +ECe ECe f Y
Sthr nn nn

0
(B.2)

where fnn is a constant given by

=f nn100
100nn (B.3)

Substitution in the original model now gives the alternative MH model:
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=

+

+ + < < +

> +

Y
Y

ECe ECe f

f ECe ECe ECe f ECe ECe f

ECe ECe f

1

1 *( ) ( 1)

0 ( 1)

nn nn
Y
S

nn
S
Y nn nn nn

Y
S nn nn

Y
S

nn nn
Y
S

0

0

0
0 0

0
(B.4)

At =nn 100 =f 0nn and =ECe ECenn thr , which yields the original model. The choice =nn 0 formulates the model in terms of Y S,0 and the lethal
soil salinity ECelethal.

van Genuchten-Hoffman

= =
+ ( )

Y ECe
Y

nn{ }
100

1
1

nn
ECe
ECe

p
0 nn

50 (B.5)

Hence

=ECe ECe g( ) ( )nn
p p

nn50 (B.6)

where =g fnn nn nn
100 .

To be meaningful, it is required that < <nn0 100.
Substitution in the original model yields the alternate form of the vGH model:

=
+

Y
Y g

1
1 ( )nn

ECe
ECe

p0
nn (B.7)

At =nn 50 =g 1nn thus providing the original model.
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